Energy Program Review:
Origin and Controls on Microbial Gas Accumulations
(Task 7 Geochemistry of Solid Fuels Project)

April 3, 2013

Presented by Task Leaders:
Denise Akob and Elliott Barnhart (Microbiology), Bill Orem (Geochemistry), Art Clark and Leslie Ruppert (Geology)
Task Goal

• Understanding biogenic methanogenesis¹ in place in order to develop methodologies for enhancing microbial methane production from:
 – Coal
 – Coal waste
 – Shale
 – Depleted petroleum reservoirs

→ Necessary to understand microbial biodegradation pathways and physical and chemical conditions effecting microbial methane production from coal.

¹The formation of methane by methanogenic microbes.
Microbial Natural Gas Production from Coal

1. Enzymatic hydrolysis/solubilization of coal organics

2. Degradation of soluble coal organics
 (Orem and others, 2010)

3. Methanogenesis
 • Acetoclastic (acetate)
 • Hydrogenotrophic (H₂/CO₂)
 • Methylotrophic (Methanol, methylamines)

Jones and others, 2010.
Microbial Natural Gas Production from Coal

- Pathways of coal solubilization (1 & 2) are still poorly understood.

- Different methanogenic pathways (3) dominate in different environments (Schlegel and others, 2013; Jones and others, 2008).

Jones and others, 2010.
How can we enhance natural gas production in coal?

- Stimulate microbial populations
 - Increase biomass in coal deposits
 - Enhance degradative capabilities

- Modify coal matrix
 - Physical modification
 → increase microbial access to coal by increasing surface area
 - Chemical changes
 → increase bioavailability of organic material in coal by chemical oxidation
Research Approach

Field Studies
• Obtain coal and formation water samples for physical, chemical, and microbial community characterization

Lab Experiments
• Biodegradation pathways
• Rates of gas production
• Improving gas yields

Applications
• Methods for enhancing in place methanogenesis
• Field test
Field Site

• BLM managed land

• Coal beds include:
 – Knobloch
 – Calvert
 – Nance
 – **Flowers-Goodale (FG)**
 – Witham
 – Terret

• Coal beds extend into Wyoming
 – Similar in physical, chemical, and hydrologic properties
Why Tongue River Coal?

• High potential for microbial methanogenesis
 – Low salinity (no competition with microbial sulfate reduction)

• Remote location

• BLM land
 – Facilitates testing
 – Access is assured
Summary of Research & Results to Date

<table>
<thead>
<tr>
<th>TEST SITE CRITERIA</th>
<th>YES</th>
<th>NO</th>
<th>UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Results</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WBC-2 bioassay</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endemic bioassay</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viable microbial community</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologic Factors</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Low gas content</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low rank</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (< 1,000 ft)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal bed thickness (10-20 ft)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bounded by fine-grained sediments</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleat development</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologic Factors</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanogenic conditions</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate permeability</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Confined and isolated aquifer</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Low hydraulic gradient</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Logistics</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Site access</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site setting</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal surface and subsurface</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtainable permits</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperator support</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Field Site Results

• Recharge is correlated with biogenic methane. (Bates and others, 2011)

• Most productive coal bed methane wells are along the margins of the PRB.

• Cyanobacteria (algae) detected in the basin and highest abundance at the outer margins. (Barnhart, E., 2013, USGS, personal commun.)
Field Site Results

• *In situ* microbes
 – Methanogens detected but in low abundance
 – *Actinobacteria* preferentially associated with coal seams
 • Implicated in coal degradation (Ballav and others, 2012)
 • Future work is needed to assess the role of these organisms in coal degradation
Lab Results:
Biostimulation of methane production from coal

- Batch systems with native PRB microbes
- Increased methane with algal extract

Barnhart, E., 2013, unpubl. data.
Field Studies
• Obtain coal and formation water samples for physical, chemical, and microbial community characterization

Lab Experiments
• Biodegradation pathways
• Rates of gas production
• Improving gas yields

Applications
• Methods for enhancing in place methanogenesis
• Field test

• Patent
• FY13/14 research plans
Patent

- **Process for Enhancing Microbial Natural Gas Production from Coal Using Coal Oxidation and Stimulation with Algal Residues**

- Joint Submission:
 - USGS (W. Orem, E. Jones, E. Barnhart, A. Clark, L. Ruppert)
 - Montana State University (M. Fields, E. Barnhart, A. Cunningham, R. Gerlach, L. Spangler)

- Provisional Patent Application No.: 61/612,718 filed in 2012
Patent Strategy
Enhancing Microbial Natural Gas Production from Coal
Patent Strategy
Enhancing Microbial Natural Gas Production from Coal

Phase 1:
Natural Gas Collection
Patent Strategy
Enhancing Microbial Natural Gas Production from Coal

Phase 2:
Algal Cultivation
Patent Strategy
Enhancing Microbial Natural Gas Production from Coal

Phase 3: Produce New Microbial Natural Gas
Patent Strategy
Enhancing Microbial Natural Gas Production from Coal

Phase 3: Produce New Microbial Natural Gas
Benefits of Enhancement Strategy
Patent Application No.: 61/612,718

• Beneficial use of coal bed produced water

• Algae
 – Biofuel production increases profitability
 – Growth removes atmospheric CO₂

• Stimulation of microbial methane
 – Reuse of coal bed methane infrastructure
 – Multiple stimulation cycles possible

• Transferable technology
 – Other fossil energy substrates (e.g., depleted petroleum reservoirs)
 – Wastes (e.g. coal slurry, rock piles)
FY13/14 Research Plans

Field studies and lab experiments

• Objectives:
 – Examine pathways of coal degradation by native Flowers Goodale microbes.
 – To refine the technology for enhancing natural gas production from coal via algal extract stimulation.
 – Perform hydrologic testing at the field site to determine the efficacy of performing a future field test.
Collaborators

- **Montana State University, Center for Biofilm Engineering**
 Dr. M. Fields, Dr. A. Cunningham, E. Barnhart (PhD student)

- **University of Arizona**
 Dr. J. McIntosh, Dr. D. Vinson (Post-Doc), D. Ritter (PhD student), S. Osborn (PhD 2010), B. Bates (MS 2010), C. Pantano (MS 2012)

- **Arizona State University**
 Dr. M. Ziv-El, Dr. H. Cadillo-Quiroz

- **National Institute for Biotechnology and Genetic Engineering, Pakistan**
 Dr. R. Haider

- **Bureau of Land Management**

- **ArcTech, Inc., Chantilly, VA**

- **University of Queensland, Australia**
 Dr. P. Jagals

- **University of Alberta, Canada**
 Dr. S. Mitra, A. Stephen (PhD student)

- **Colorado School of Mines**
 Lisa Gallagher, Ph.D. student
References

Contact Information:

Bill Orem¹ borem@usgs.gov
Denise Akob² dakob@usgs.gov
Jingle Ruppert¹ lruppert@usgs.gov

¹USGS Midwest Energy Resource Science Center
 Reston, VA 20192

²USGS National Research Program
 Reston, VA 20192