
Figure 1.  Example of aggregation of 24 SAUs grouped into three regions A, B and C:  (a) SAU probability distributions; (b) correlation matrix; (c) aggregation, including additional 
extreme cases of total independence and perfect correlation.

Figure 2. Relationships among number of SAUs, value 
of the off-diagonal elements when all of them are 
equal, and measure of overall dependency as the 
minimum to maximum eigenvalue ratio.

METHOD
There are two main inputs in the aggregation.  The first is the stochastic 
estimates of CO2 storage capacity at subsurface conditions for each SAU in 
the form of numerical probability distributions accounting for uncertainty 
(e.g. Figure 1a).  The estimated capacity was obtained by 10,000 Monte 
Carlo simulation runs for each of the four itemized storage categories.  For 
convenience, the simulation ignores any correlations that may exist among 
the SAUs.  The second major input is a correlation matrix specifying the 
ignored dependency between SAUs (e.g. Figure 1b).  The Cholesky 
decomposition is used to aggregate SAUs imposing these correlations, thus 
compensating for the simplification in generating the probability 
distributions independently.
  The result of aggregating several probability distributions is another 
distribution.  Figure 1c illustrates 3 possibilities: (a) assuming perfect 
dependence, which implies a matrix full of 1s; (b) partial dependence 
specified in this case by the matrix in Figure 1b; (c) total independence, 
where all off-diagonal elements in the matrix are zero.  As dependency 
increases, so does uncertainty.
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CONCLUSIONS
Aggregation matters and presents some subtleties.  If there is interest in 
partial aggregations, beyond the first level, further aggregations can be 
obtained always starting from either individual SAUs or building on 
previous results.  We favor single-stage aggregation because: (a) it is easier 
for the assessors to infer correlation coefficients between SAUs than, say, 
between basins; (b) use of, say, basin-to-basin correlation coefficients in 
multi-stage aggregation equal to the correlation coefficient between SAUs 
in these basins results in less uncertainty than single-stage assessments; (c) 
as the number of SAUs increases, single-stage aggregation is less sensitive 
to errors in the correlation coefficients.

PRACTICAL CONSIDERATIONS
The norm is scarcity of hard data to be able to calculate the exact degree of 
association in the storage capacity of pairs of SAUs.  The correlation 
coefficients are thus inferred using approaches typical of elicitation of 
expert judgment and Bayesian statistics.
  When, like in our case, there is interest in partial aggregations, 
aggregations for successive stages can be done in two ways: (a) always 
starting from individual SAUs (single stage); and (b) using the partial 
aggregations over smaller areas to obtained results for larger areas 
(multi-stage).  Multi-stage aggregation has the advantage of requiring the 
definition of significantly less correlations coefficients.
  Our research produced two important findings: (a) when using the 
same correlation coefficient for all SAUs in two different regions such as 
regions A and B in Figure 1b in a single-stage aggregation and the same 
value also for the corresponding region-to-region correlation coefficient in 
a multi-stage aggregation, the probability distribution for the multi-stage 
aggregation has less dispersion than the one for single-stage aggregation. 
The discrepancy is more significant as the number of SAUs and stages 
increases.  One way to obtain comparable distributions is to have 
region-to-region coefficients larger than those between the corresponding 
SAUs, which is counterintuitive. (b) Figure 2 shows that the sensitivity of 
the aggregation to specific values of the off diagonal correlation 
coefficients decreases as the number of individual SAUs increases, thus 
making less critical the inference of correlation coefficients in single-stage 
aggregation.

BACKGROUND
Carbon dioxide (CO2) sequestration in the subsurface is widely recognized 
as one important approach to mitigate global climate change, yet practical 
implementation is at its infancy.  As a first step of a technologically 
complex and economically expensive initiative, the U.S. Geological 
Survey is at the concluding stages of a probabilistic assessment to evaluate 
the capacities and uncertainties across the country for an potential 
systematic implementation of CO2 geosequestration away from fresh 
groundwater aquifers (Brennan et al., 2010).  Additionally, injection depth 
has been restricted primarily to formations in the 914−3962 m range to 
reflect technological feasibility.
  Pore space calculations have been conducted using volumetric 
methods. Mechanisms for retaining CO2 in the subsurface at a supercritical 
state are: (a) buoyant trapping and (b) residual trapping. Buoyant trapping 
is restricted to geologically closed structures. Everywhere else, the trapping 
is considered to be of the residual type and is subdivided into three 
efficiency categories depending on reservoir permeability. Given the size 
of the total area to assess, the country has been subdivided into 
approximately 200 storage assessment units (SAUs). Therefore, using the 
Monte Carlo method, results for each SAU consist of probability 
distributions for 5 categories of trapping capacity converted to subsurface 
mass: buoyant, three types of residual, plus total tonnage. This presentation 
focuses on the challenge of adding the partial results per SAU to the basin, 
region and country level for inference of resources and their associated 
uncertainties.
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